Followers

Sunday, 21 October 2012

Boolean Expression



4.2.2.1   Peraturan Boolean Algebra.

Ekspresi Boolean boleh di ringkaskan dan boleh di manipulasi.Jadual 2 menunjukkan peraturan asas Boolean Algebra dapat membantu memanipulasi dan menyelesaikan persamaan logik.

                                       Jadual 4 – 2 : Peraturan Asas Boolean Algebra.

   AND Form
     OR Form
Identity Law

    A.1 = A
     A + 0 = A
Zero and One Law

    A.0 = 0
    A + 1 = 1
Inverse Law

   A. = 0
   A +  = 1
Idempotent Law

   A.A = A
   A + A = A
Commutative Law

  A.B = B.A
  A + B = B + A
Associative Law

 A.( B.C ) = ( A.B ).C
 A + ( B + C ) = ( A+B ) + C
Distributive Law

A + ( B.C ) = (A + B ).( A + C )
A.( B + C ) = ( A.B ) + ( A.C )
Absorption Law

A( A + B) = A
A + A.B = A
A + A’B = A + B
DeMorgan’s Law

( ) = +
( ) = .
Double Complement Law
 = X
 = X

 
DERIVATION
Absorption Law Derivation
A( A+B ) = A ( 1 + B )                                               à1 + B = 1                          
                = A(1)                                                         à A . 1 = A
                = A

Absorption Law Derivation
A( A + B ) = AA + AB                                              à A = A . A
                  = A + AB                                                 àA ( 1 + B ) = A (1)
                  = A
Absorption Law Derivation
A + A’B = ( A + AB) + A’B                                    à A = A .A
               = ( AA + AB ) + A’B                               à ( AA + BB ) + A’B = AA + ( AB + A’B )
               = AA + AB + A’B
               = ( A + A’ ) + ( A + B)                             à ( A + A’) (A + B) = AA +AB + A’B
              = 1. ( A + B )                                            à A + A’ = 1
           = ( A + B ) 


Distributive Law Reverse Derivation
( A + B ) . ( A + C ) = AA + AC + AB + BC                          à AA = A   
                                = A + AC +AB +BC                               à A ( 1 + C ) = A( 1) = A
                                = A + AB + BC                                      à A (1 + B ) = A ( 1) = A
                               = A ( 1 + B ) + BC
                               = A . 1 + BC
                               = A + BC

4.2.2.1.1   De Morgan’s Law
“ jika garisan di putuskan , maka tandanya akan berubah”

            =  +
              = .

                



No comments:

Post a Comment